Théorème d’Abel pour les séries entières

- Advertisement -

Nous proposons des applications du théorème d’Abel pour les séries entières. Ce théorème donne des informations sur la somme d’une série entière à l’intérieur du disque de convergence. On rappel que Niels Henrik Abel (1802-1829) est un mathématicien norvégien.

Rappel sur le théorème d’Abel

Voici l’énoncer du théorème d’Abel pour les séries entières. Il est aussi appelé théorème d’Abel non tangentiel.

Théorème: Soit $f(z)=\sum_{n=0}^{\infty}a_n z^n$ une série entière de rayon de convergence $R\in ]0,+\infty[$. On suppose que $\sum_{n=0}^{\infty}a_n z_0)^n$ converge pour un $z_0$ de module $R$. Soit $\varphi\in [0,\frac{\pi}{2}[,$ $\rho\in [0,2R\cos(\varphi)[$ et $\Delta(z_0,\rho,\varphi)$ la portion du secteur de $\overline{D}(0,R)$ definie par \begin{align*} \Delta(z_0,\rho,\varphi):=\left\{z: z=z_0(1-re^{i\theta})\;\text{avec}\;0\le r\le \rho,\;|\theta|\le \varphi\right\}.\end{align*} Alors la serie $\sum_{n=0}^{\infty}a_n z^n$ converge normalement sur $ \Delta(z_0,\rho,\varphi)$. En particulier on a convergence uniforme de la série sur le segment $[0,z_0]$.

En particulier $f$ est continue sur $\Delta(z_0,\rho,\varphi)\cup\{z_0\}$.

Cas réel du théorème: Soit $f(x)=\sum_{n=0}^{\infty}a_n x^n$ une série entière de rayon de convergence $R$. On suppose que $\sum_{n=0}^{\infty}a_n R^n$ est convergente. Alors $f$ est continue sur $[0,R]$.

Applications du théorème d’Abel pour les séries entières

Exercice: Montrer que \begin{align*} \sum_{n=1}^\infty \frac{\sin(nt)}{n}=\frac{\pi-t}{2},\quad t\in ]0,2\pi[.\end{align*}

- Advertisement -

Hot this week

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Topics

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Suites de fonctions

Les suites de fonctions sont un sujet important en...

Résolution des systèmes linéaires

La résolution des systèmes linéaires est une tâche fondamentale...

Calcul des Primitives : Exercices Corrigés

Plongez dans le passionnant domaine du calcul des primitives...

Related Articles

Popular Categories

spot_img