Le Laplacien en coordonnées Polaires

Date:

- Advertisement -

On propose un exercice corrigé sur le laplacien en coordonnées polaires. C’est une bonne application du calcul différentiel. D’autre part, on donne une étude de l’opérateur de Laplace pour une classe de fonctions homogènes.

Exercice: Soient $U=\mathbb{R}^2\backslash\{(0,0)\}$ et $f\in \mathcal{C}^2(U,\mathbb{R})$. Le laplacian de $f$ est par définition\begin{align*}\Delta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}.\end{align*}

  1. On définit \begin{align*}F:]0,+\infty[\times \mathbb{R}\to \mathbb{R},\quad (r,\theta)\mapsto f(r\cos\theta,r\sin\theta).\end{align*}Déterminer $\Delta f(r\cos\theta,r\sin\theta)$ à l’aide des dérivées partielles de $F$ en $(r,\theta)$.
  2. On dit que $f$ est $\alpha$-homogène ($\alpha\in\mathbb{R}$) si pour tout $x\in U,$ pour tout $\lambda > 0,$ on a $$f(\lambda x)=\lambda^\alpha f(x).$$ Si $f$ est de classe $\mathcal{C}^1$ et $\alpha$-homogène, montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial x}$ sont $(\alpha-1)$-homogènes.
  3. Déterminer les fonctions $f:U\to \mathbb{R}$ de classe $\mathcal{C}^2$ et homogènes vérifiant\begin{align*}\Delta f(x,y)=\frac{x^2}{x^2+y^2}\quad \text{sur}\quad U.\end{align*}
- Advertisement -

LAISSER UN COMMENTAIRE

S'il vous plaît entrez votre commentaire!
S'il vous plaît entrez votre nom ici

Related articles

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en mathématiques pour démontrer des propriétés ou des théorèmes concernant...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en mathématiques, que ce soit pour simplifier des calculs, résoudre...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre, jouant un rôle clé dans la théorie des groupes....

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques, deux concepts fondamentaux en algèbre. Ce cours offre un...