Théorème de Banach Steinhaus et ses applications

- Advertisement -

Le théorème de Banach Steinhaus et ses applications constituent une partie importante de la théorie des opérateurs. En fait, ce théorème est la source de la preuve des grands théorèmes de la théorie des opérateurs. Aussi, nous rappellerons ici ce fameux théorème et donnerons ses applications.

Théorème de Banach-Steinhaus et ses applications

Soient $E$ et $F$ sont deux espaces de Banach (espaces vectoriels normés et complets). Pour simplifier on note les normes de ces espaces par le même symbole $|cdot|$. On note aussi l’espace des application linéaire continues de $E$ dans $F$ par $\mathcal{L}(E,F)$. De plus on pose $\mathcal{L}(E,E):=\mathcal{L}(E)$.

Sur $\mathcal{L}(E,F)$ on définie une norme par \begin{align*} \|T\|:=\sup_{x\in E,x\neq 0}\frac{\|Tx\|}{\|x\|}.\end{align*}Muni de cette norme $\mathcal{L}(E,F)$ est un espace de Banach. On rappel que si on a une suite d’opérateurs $(T_n)\subset \mathcal{L}(E,F)$ et un opérateur $T\in \mathcal{L}(E,F)$. Si \begin{align*} \lim_{n\to +\infty}\|T_n-T\|=0,\end{align*}alors on dit que $(T_n)$ converge uniformément vers $T$. Dans ce cas, il est facile de voir aussi que, pour tout $x\in E$ on a $\|T_n x-Tx\|\to 0$ quand $n\to\infty$ (convergence dans $F$). C’est la convergence simple ou convergence forte. Par suit, sur $\mathcal{L}(E,F)$ on peut définir deux topologies, à savoir, la topologie uniforme et la topologie forte.

Voici un théorème fondamental d’analyse fonctionnelle.

Théorème de Banach Steinhaus: Soit $E$ et $F$ espace de Banach et soit $(T_i)_{i\in I}\subset \mathcal{L}(E,F)$. On suppose que\begin{align*}\forall x\in E,\quad \sup_{i\in I}\|T_i(x)\| < \infty.\end{align*}Alors on a aussi\begin{align*}\sup_{i\in I}\|T_i\| < \infty.\end{align*}

Applications du théorème de Banach Steinhaus

Soient $E$ et $F$ deux espaces de Banach sur le même corps $\mathbb{R}$ ou $\mathbb{C}$. Soient $(T_n)_n\subset\mathcal{L}(E,F)$ une famille d’opérateurs bornés, $T\in \mathcal{L}(E,F)$ et soit $B$ une partie totale de $E$, i.e. $E=\overline{{\rm Vect}(B)}$. Montrer que les points suivants sont équivalents:

  1. $T_n(b)\to T(b)$ pour tout $b\in B,$ et $\sup_{n\ge 1}\|T_n\| < \infty$.
  2. $T_n(x)\to T(x)$ quand $n\to +\infty$, pour tout $x\in E$.

Solution:

  1. Supposons (2). Comme elle est vraie sur $E,$ elle est en particulier vraie pour tout $b\in B$. D’autre part, comme pour tout $x\in E$ la suite d’éléments de $F,$ $(T_n(x))_n$ est convergente, alors elle est bornée, i.e.,\begin{align*}\sup_{n\ge 1}\|T_n(x)\| < \infty.\end{align*}Ainsi le oint (1) découle par le théorème de Banach-Steinhaus.
  2. Supposons (1) et on pose $M:=\sup_{n\ge 1}\|T_n\| < \infty$. Comme les opérateurs $T$ et $T_n$ sont linéaire et que $T_n(x)\to T(x)$ pour $x\in B$, alors $T_n(x)\to T(x)$ pour tout $x\in {\rm Vect}(B)$. Soient $\varepsilon > 0$ et $x\in E$. Par densité de ${\rm Vect}(B)$ dans $E,$ il existe $(x_n)\subset{\rm Vect}(B)$ tel que $x_n\to x$. Donc il existe $n_0\ge 1$ et $y=n_{n_0}\in {\rm Vect}(B)$ tel que $\|x-y\|\le \varepsilon$. On a alors \begin{align*}\overline{\lim}_{n\to\infty} \|T_n(x)-T(x)\|\le (M+\|T\|)\varepsilon,\qquad \forall \varepsilon>0.\end{align*}Comme $\varepsilon$ est arbitarire, alors $T_n(x)-T(x)\to 0$.
- Advertisement -

Hot this week

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Topics

Raisonnement par Récurrence

Le raisonnement par récurrence est une méthode essentielle en...

Puissance d’un Nombre

La notion de puissance d’un nombre est fondamentale en...

Groupes quotients exercices corrigés

Les groupes quotients sont une notion fondamentale en algèbre,...

Groupes monogènes et cycliques

Entrez dans le monde des groupes monogènes et cycliques,...

 Applications linéaires: Cours

Les applications linéaires sont un concept fondamental en mathématiques,...

Suites de fonctions

Les suites de fonctions sont un sujet important en...

Résolution des systèmes linéaires

La résolution des systèmes linéaires est une tâche fondamentale...

Calcul des Primitives : Exercices Corrigés

Plongez dans le passionnant domaine du calcul des primitives...

Related Articles

Popular Categories

spot_img